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Abstract

The goal of this report is to provide an introductory-level overview of the linear Boltz-
mann equation in the context of neutron transport. After deriving the transport equation,
we discuss some of its basic applications in reactor theory. Finally, we review several sim-
plifying approximations of the linearized Boltzmann equation that are essential to solving
it in many applications. Although the context of neutron transport is called upon to add
concreteness to our discussion, many of the concepts and approximations that we discuss
remain relevant in other many other phenomena.
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1 Introduction

The purpose of our document is to take someone new to the concepts of neutron transport
and teach them some basics principals, hopefully in a manner that helps point them to further
resources to continue their education. To this end, we begin by taking a philosophic approach to
the linear Boltzmann equation, which has its roots in the kinetic theory of gases. A comprehen-
sive reference for the Boltzmann Equation that discusses its applications to different fields and
also and much more sophisticated mathematical treatment of its derivation can be found in [3].
The specific context that we will derive and discuss the linear Boltzmann equation is neutron
transport. Hence, it will be helpful to start with a physical description of the neutron system
that we hope to model with the transport equation. Therefore, we start with a description
of the different ways neutrons interact with matter. The discussion herein is meant to orient
a reader with little to no background in neutron transport and the reader may discover that
some scientists and engineers take a much more nuanced approach when discussing neutron
interactions.

1.1 Particle reactions

First, from the point of view of just a single, isolated neutron traveling through space the bulk
part of the volume in any body of matter is unoccupied space. To illustrate that fact, which
may sound surprising, suppose that we scaled up the radius of each nuclei of the atoms that
make up the surrounding crystal lattice of matter to 30 cm, then the outermost electrons in
each atom would be 30 km away (i.e., 105 times the size of the radius). The nearest neighboring
nucleus (NNN, for short) would be another 60 km away. Even in fairly dense materials, like
heavy metals, that volume of occupied space amounts to a paltry to one part in 1015 (ten
quadrillion). And the rest? Just empty space. The actual dimensions we’re talking when it
comes to neutrons, nuclei, and atoms without any scaling are shown in Table 1 for reference.

Given the relatively large expanses between nuclei, together with the fact that neutrons do
not carry a charge (and consequently, experience no force of attraction) you may be wondering
how any interactions with surrounding matter occur at all. There are two additional factors
that we haven’t thought of yet, which can substantially alter the picture we have been describing
so far. The first is that in most volumes of interest, e.g. a nuclear power reactor, are flooded
with neutrons. Hence, the number of neutrons actually tends to be relatively large in contrast
to the scenario we just described in terms of a single, isolated neutron. Second, relative to
the distance between the NNN, neutrons are traveling extremely fast (8,000 to 80,000,000 km

Table 1: Physical dimensions (in round numbers) of several fun-
damental particles in increasing order with respect to radius. The
number of protons is denoted Z and A denotes the number protons
and neutrons.

Particle Radius (cm) Mass (g) Charge (Coul)

Electrons 2× 10−13 9× 10−28 −2× 10−19

Protons 1× 10−16 2× 10−24 2× 10−19

Neutrons 1× 10−16 2× 10−24 0
Nuclei 1× 10−13 A · 2× 10−24 Z · 2× 10−19

Atoms 1× 10−8 A · 2× 10−24 0
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hr−1). Consequently, collisions1 between neutrons and nuclei happen on relatively short time
scales (between microseconds and milliseconds).

Now that we have some justification that we should expect a large number of very frequent
collisions, let’s discuss some of the different possible outcomes of individual collisions. While
there are many different possible neutron interactions, we can group them all into three main
categories: 1) Scattering, 2) Absorption, and 3) Fission.

Perhaps the most natural to start with is scattering. Scattering can happen in two different
varieties, either elastic or inelastic. In an elastic collision, there is no exchange (or transfer)
of kinetic energy between the two bodies, but the emitted neutron usually travels in a new
direction. In contrast, in an inelastic collision, the incident neutron, gets caught (in a sense)
in the target nucleus for just an instant before being emitted with a change in its momentum.
Actually, inelastic collisions are even more complicated than this suggests, the neutron emitted
by the nucleus after the collision might not be the same one that caused the collision.

The next category of interactions are absorptions interactions, or in this sense “capture”
interactions. Depending on the energy level of the incident neutron (and perhaps the direction
it is traveling), the neutron could just be absorbed by the target nucleus without escaping,
consequently leaving the target nucleus in an excited energy state (think of a raindrop alternat-
ing between stretching and contracting in multiple directions). After the absorption, there are
several ways for the excited nucleus to de-excite. There are many ways an excited nucleus could
de-excite, some of these are: the emission of light as a gamma ray, the emission of multiple
neutrons (conservation of momentum still applies here however!), and the emission of a charged
particle (i.e.; protons, alpha particles, electrons).

Finally, if the incident neutron is moving rapidly enough, it could smash into the nucleus
with enough force to break it into fragments (in analogy to the raindrop, enough tension caused
by the stretching and contracting would cause it to break apart into smaller droplets) causing a
fission reaction. In a sense fission is a type of absorption interaction since the incoming neutron
is absorbed before the nucleus breaks apart. To this end, you may hear people consider fission
as a type of absorption reaction in day-to-day conversations and they would be right to do so
(something to note, typically if a person says “capture” reaction they are referring to absorption
type reactions without fission. And if a person says “absorption” reaction, they mean capture
+ fission.). However, we wanted to break fission reactions apart from absorption reactions
(no pun intended) because fission events are handled specially in the Boltzmann transport
equation. Its most important feature is that, in addition to breaking apart the incident nucleus,
it is accompanied by the emission of more than one neutron. Although, we have over simplified
all three types of reactions described here, the general picture is that all neutron-nuclei reactions
can be placed into one of three categories as we have defined them: scattering, absorption, and
fission, and all three reactions have a different net effect on the redistribution of our population
following a collision.

You may have noticed that that the preceding list of interactions did not include collisions
between neutrons with themselves. You might be wondering, why not? Although, we have
assumed that the region of interest contains a large number of neutrons (in the sense that
interactions with the surrounding nuclei occur on relatively short time scale relative to the dis-
tance separating them), the number of nuclei relative to the number of neutrons is relatively
much larger. This, in addition to the fact that the range of interaction forces between neu-
trons is also several orders of magnitude smaller than the range of influence of intermolecular
forces, neutron-neutron collisions are likely infrequent enough that they will be neglected (See
Lewis and Miller [9] and Cercignani [3] for further justification). Mathematically, leaving out
neutron-neutron, or more generically particle-particle interactions, has a number of important

1Carrying on with the suggestion that neutrons undergo gentle interactions with matter would be a supreme
understatment taking into account that even the more modest of these incidents that involve particles screaming
through space at 8,000 km hr−1 is closer to an astroid impact with a planet...relatively speaking, of course.
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Figure 1: A beam of neutrons is traveling through a target.

consequences, although we will not formally demonstrate it explicitly as part of our derivation of
the transport equation in Section 3. In general, the Boltzmann equation is reduced to the linear
Boltzmann equation by assuming particle-particle interactions do not occur. This distinguishes
neutron transport from other, perhaps more familiar types of transport processes, like classical
statistical mechanics. In statistical mechanics we are concerned with particles interacting with
themselves, which is the main source of nonlinearity in the forms of the Boltzmann equations
that describe these processes. It is worth having this important assumption (the assumption
that we can neglect neutron-neutron interactions) in mind since it will play an underlying role
in informing how we can solve the neutron transport equation in Sections 4 and 5.

1.2 Nuclear cross sections

Given the complexity of the interactions between an incident neutron and a target nucleus,
it is not feasible (at this point in time given that this is likely a wholly intractable set of
quantum mechanical calculations featuring nuclei with highly complicated energy structure) to
predict with any degree of certainty the particular mechanism through which the nucleus will
de-excite following a collision, e.g., neutron re-emission via inelastic scattering or gamma ray
emisssion via absorption. However, given a suitably large population and a sufficient number
of interactions, we can measure the relative frequency of each type of interaction, which then
allows us to formulate probabilistic-type predictions regarding outcomes of isolated interactions.
Estimating these probabilities requires conducting actual experiments. Moreover, from our
simplified description of nuclear reactions above, we know that these statistics we could collect
are dependent on the the (kinetic) energy of the incident neutron and the species of nuclei that
the neutrons are interacting with.

This probabilistic aspect of the model is encapsulated in the notion of a nuclear cross section,
invented for this exact purpose by ingenious physicists. To introduce the idea of a nuclear cross
section, consider a volume of space in the shape similar to a cylinder, shown in Fig. 1, with
length ∆u and cross sectional area ∆A occupied by a concentration of n atoms/cm3. Next,
suppose we direct a beam emitting one neutron at a time traveling in the direction normal
to one end of our cylinder and that the thickness of the cylinder ∆u is sufficiently small to
guarantee that the atoms occupying the cylinder do not overlap one another (i.e., our cylinder
is probably proportioned more like a quarter than a can of soup). If we observe enough neutrons,
the probability of a collision with one of the atoms occupying the cylinder is equivalent to the
ratio of the cross sectional area “shadowed” by the occupying atoms to the cross sectional area
of the unoccupied space. If we denote the cross sectional area of each atom as Aa, then this
ratio is

p =
Aan∆V

∆A
=
Aan∆A∆u

∆A
= nAa∆u. (1)

In the context of the experiment, the probability p is the observable (measurable), and the
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nuclear cross section Aa is treated as unknown. Hence, after we have collected enough data to
be confident in our value for p, we can use Equation (1) to solve for Aa, which is called the
microscopic cross section2.

Now, here’s the take away from this Gedank of sorts. We usually aren’t too interested in the
microscopic cross section of an atomic species. Instead, we are interested in a related quantity
called the macroscopic cross section denoted σ. The macroscopic cross section is the product
of the microscopic cross section and the concentration of atoms n, i.e.,

σ = nAa. (2)

Since σ will turn out to be an important quantity that we will need later, let’s examine its units.
Notice that in terms of the probability p from Equation (1),

σ =
p

∆u
, (3)

Recall, that ∆u was chosen to guarantee that no atoms are overlapping in our cylinder, if ∆u
is also exactly a path length (the average distance between collisions) than we would expect at
most one interaction per neutron in our cylinder in unit time. Therefore, the the macroscopic
cross section3 σ is just

σ = probability of an interaction per unit path length during ∆t, (4)

where ∆t is the transit time of a neutron (at a fixed energy) through the cylinder.
Recall that the energy of the neutrons affects the likelihood of certain reactions, hence we

need to repeat this experiment for different neutron energies E. Next, if we keep track of the
nuclear species occupying a given region of space according to their position by x, then the total
macroscopic cross section is a function of the form σ = σ(x, E).

It is also helpful to break up the total macroscopic cross section into the contributions from
different reactions. For a reaction of type x, the corresponding macroscopic cross section is
denoted σx. Therefore, the total macroscopic cross section σ is the sum of all partial cross
sections σx for all possible types of neutron-nucleus collisions,

σ(x, E) =
∑
x

σx(x, E). (5)

For example, if we want to know that total probability (per unit path length) of a reaction
assuming just scattering and fission, then

σ = σs + σf , (6)

where the subscripts s and f denote elastic scattering and fission, respectively.

1.3 Further reading

There are two texts in particular which we believe provide a lengthier discussion of the topics
provided in this section at an introductory level. The first is Fundamentals of Nuclear Reactor
Physics by E. E. Lewis [8]. Lewis provides great discussion of basic concepts (such as cross
sections, mean free paths, and reaction types) using a very fundamental approach. We believe
his physics-based approach to the topic complements our geometry-based discussion provided in

2The units of microscopic cross sectional area are measured in cm2, however, it is customary to use the units
of barns, equivalent to 1024cm2. Why you ask? Because even the broadside of a barn is not so easy to hit under
the assumption of negligible atomic cross sectional area.

3Most texts use Σ to denote the macroscopic cross section and σ to denote the microscopic cross section.
As it turns out, this notation creates a conflict with the use of Σ for sums. Since we will mainly deal with the
macroscopic cross section, we will use σ throughout.
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Figure 2: The neutron is positioned at location x and is traveling
with a velocity given by vΩ. Note that the location vector of the
neutron and the direction vector of the neutron are two separate
quantities.

the previous section. Lamarsh and Baratta’s [7] work titled Introduction to Nuclear Engineering
is another great work providing an easy to follow introduction to nuclear engineering concepts.
Lamarsh and Baratta, however, is considered by some as a more complicated text than Lewis.
That being said, Lamarsh and Baratta remains an excellent resource for those new to nuclear
engineering. Some readers may find it helpful to begin with Lamarsh and Baratta and use
Lewis to explain some of the more complex ideas in Lamarsh and Baratta. On a final note,
both these resources use a slightly different notation than what is used in this document. We
choose a notation commonly used in more advanced nuclear engineering texts. Our hope is to
educate a novice reader to a point where they could reference these advanced texts. It is our
hope that the differences in notation do not discourage any readers, rather that demonstrates
the various notational styles of nuclear scientists and engineers.

2 Notation

Before starting our derivation of the equation, we need to introduce some useful notation that
will be called upon later.

Figure 2 shows the position of a neutron is given by a vector x (in three space x = (x, y, z)).
The velocity v of a neutron is given by4

v = vΩ, (7)

where v = |v| is the speed of neutron and Ω = (Ωx,Ωy,Ωz) is a unit vector describing the
direction of the neutron’s velocity. One thing to note it that v, or rather E5, and Ω can take
any value within the continuous range of 0-∞ and 0-4π respectively. In three space, the direction
is given by

Ωx = sin θ cosϕ, Ωy = sin θ sinϕ, Ωz = cos θ, (8)

4It is important to note that this velocity quantity is the velocity of individual neutrons and is more akin to
a particle velocity rather than to a mean field velocity which is averaged over a number of elements.

5The neutron’s kinetic energy given by E = 1/2mnv
2 with mn being the neutron mass.
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Figure 3: A group of neutrons exists in ∆V . Each neutron is labeled
with its direction and energy values and are color coded by the packet
in which they belong. Even though both the green and blue neutrons
are in the same ∆V , they have different energies and are traveling in
different directions. The result is that the green neutrons form one
packet and the blue neutrons form another packet.

where θ and ϕ denote the polar and azimuthal angles, respectively.
The kinetic energy of a neutron is determined from its velocity according to

E =
mv2

2
, (9)

where m denotes the mass of a neutron. Hence, given a neutron’s postion x, we must also
characterize it in terms of its direction of flight Ω and its kinetic energy E.

2.1 Number density and flux

To track larger populations of neutrons in a given region of space, it is useful to introduce a
quantity called the angular (number) density, denoted

Angular (number) density = N(x,Ω, E, t). (10)

The angular density is defined as the expected number of particles at x traveling in the
direction Ω with energy E at time t per unit volume per unit solid angle per unit energy. All
these trailing “pers” are simply a helpful reminder that

N(x,Ω, E, t)∆V∆Ω∆E = the expected number of neutrons at x

traveling along Ω with energy E at time t,

in volume ∆V within ∆Ω and ∆E. (11)

It is also helpful to further interpret this notation as categorizing the population of neutrons in
a volume ∆V into packets or groups of neutrons with two labels, shown in Fig. 3. The green
neutrons form one packet in ∆V as these neutron share a common direction and energy values
(Ω, E) and the blue neutrons form a second packet - since they have similar direction and
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energy values with each other(Ω′, E′) but different than the green neutrons. The first “label”
indicates its direction of flight in terms of a specific cone of directions ∆Ω oriented along Ω and
the second label indicates the neutron’s energy defined in terms of an interval ∆E about E.
Over time we are interested in the change in the population of each packet defined by a pair of
labels. As a preview of one of the topics we will get to later, is that in practice it is possible to
choose a manageable (finite) number of discrete angles and energies (or equivalently velocities)
to approximate their corresponding continuous spectra.

Our goal will be to eventually solve for the neutron flux. The neutron flux is important
as this quantity describes the neutron population distribution. Moreover, understanding how
neutrons are distributed in a system is foundational to determining other quantities of interest
such as how much radiation dose a person has received, how well will a nuclear reactor produce
power, can we used radiation to image the inside of a hospital patient, and other such questions.
However, there are still several other important quantities related to the angular density which
we need to define before we can turn our attention to the neutron flux. The product of the
velocity and the angular density gives an important quantity called the vector flux

Vector flux = vN(x,Ω, E, t). (12)

Integrating the vector flux over all incident directions gives the neutron current density denoted
J(x, E, t), i.e.,

J(x, E, t) =

∫
4π

vN(x,Ω, E, t)dΩ. (13)

The neutron current isn’t exactly the most used quantity in nuclear engineering. Rather,
nuclear engineers tend to care about the total flux. To find the total flux, we first take the
magnitude of vector flux in Equation (12) in order to find the angular flux,

Angular flux = vN(x,Ω, E, t) = ψ(x,Ω, E, t). (14)

Then the total flux, that is the number of neutrons at x with energy E at time t, is given by

Total flux =

∫
4π
ψ(x,Ω, E, t)dΩ. (15)

Usually, the total flux is denoted φ(x, E, t). The total flux is usually the quantity we are solving
for in our problems. Fluxes are generated by sources, which we will separate into external sources
and internal sources. We consider internal sources as neutron transfer and multiplication and
these concepts will be handled subsequently. However, we will conduct our discussion of external
neutron sources now.

2.2 Transfer probabilities

In this section, we return to the macroscopic cross section of a neutron introduced earlier.
Recall,

σ = probability per unit path length of a collision in ∆t. (16)

The macroscopic cross section has units length−1 and is usually taken as a function σ(x, E).
The remaining piece that must be built into the macroscopic cross section is that neutrons
emitted after a collision will assume a distribution of different directions of emission and energies.
Herein lies the reason transfer probabilities are considered source terms, since these complicated
expressions describe how neutrons move from one packet into another. Since these outcomes
cannot be predicted for individual collisions, we again turn to probability to model this feature.

For a reaction of type x, the probability that particles traveling with initial direction Ω′ and
initial energy E′ are emitted traveling in direction Ω with energy E after the reaction is defined
in terms of the

Differential cross section = σx(x, E′)fx(x,Ω′ → Ω, E′ → E). (17)

10
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Figure 4: Here we show how a scattering interaction moves a neutron
from one packet into another. In the leftmost image, a blue neutron
undergoes a scattering interaction with a target nucleus. The second
image shows the neutron’s change in energy and direction with a red
arrow and the third image shows the neutron now traveling in the
same packet as the green neutrons.

The quantity fx(x,Ω′ → Ω, E′ → E)∆Ω∆E is the probability that a particle traveling with
initial direction Ω′ and initial energy E′ is emitted traveling in direction Ω in the cone of
directions ∆Ω with energy E in the interval ∆E after the reaction. The two interactions that
provide a source of neutrons which we are most concerned with are scattering and fission6.
Again, the function fx must be obtained from approximations to data for each nuclear species
and reaction type present in the domain of interest. With the exception of fission reactions,
which we treat subsequently immediately below, the differential cross sections are usually treated
as normalized so that ∫ ∫

4π
fx(x,Ω′ → Ω, E′ → E)dΩdE = 1. (18)

In what follows, we will frequently write σ′f ′ = σ(x, E′)f(Ω′ → Ω, E′ → E) to reduce notation.
Figure 4 shows the process by which a neutron scatters from one energy group to another.

In this image, a neutron is traveling with direction Ω′ with energy E′ and scatters off a target
nucleus. In this context, a target nucleus is simply a nucleus belonging to the bulk matter that
the neutrons are traveling through. The scatter interaction causes a change in the neutron’s
direction and energy, shown by the red arrow in the second picture of Fig. 4. After the
interaction, the neutron is now traveling in direction Ω with energy E, denoted by the change
in color of our neutron. If we assume that the neutrons are emitted uniformly in all directions
(isotropically), then for scattering reactions system, the differential cross section has the form

fs(x, E
′ → E) =

1

4π
, (19)

since all angles are equally possible under the isotropic scattering assumption.
Another interaction that acts as a neutron source is fission. In the case of fission, a neutron

interacts with a target nucleus shown in the first image in Fig. 5, and causes a fission event
denoted by the star in the second image. Neutrons are released as a result of fission (two
neutrons in our example), and one of these neutrons happens to be traveling in direction Ω
with energy E. For the case of fission reactions we assume that the neutrons are emitted
isotropically, then the differential cross section for fission is usually re-expressed in terms of

ff (x,Ω′ → Ω, E′ → E)∆Ω∆E =
1

4π
ν(E′)f(x, E′ → E)∆Ω∆E. (20)

6It may not be readily apparent how scattering acts as a neutron source. Recall how we have considered our
neutron packets as groups of neutrons traveling with similar energies and in similar directions. Scattering acts as
a neutron source because a neutron from one packet (with energy E′ and direction Ω′) can undergo a scattering
interaction and then have energy E and direction Ω, therefore adding a neutron to our group.You may wonder
how we account for this neutron being lost from its original packet. This is accounted for in the total cross section
which determines the number of neutrons lost from a packet by all forms of interactions.
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Figure 5: Another interaction that acts a neutron source is fission. In
the first image, a neutron interacts with a target nucleus and causes
a fission event, denoted with the star in the second image. The
fission event causes two neutrons to be born with different energy
values and traveling in different directions. One of those neutron is
traveling in direction Ω with energy E.

The quantity ν(E) is the expected number of neutrons emitted in a fission with an incident
neutron with energy E′. The distribution f(x, E′ → E)∆E is called the fission spectrum of
neutrons, and is usually denoted χ(E)7 (see [9] for more details). In several subsequent sections,
to emphasize the assumption of isotropic emission, we will also use χ(E) in order to distinguish
this distribution from the more differential cross section ff (x,Ω′ → Ω, E′ → E). The fission
spectrum quantifies the probability that an incident neutron with energy E′ will lead to a
neutron emitted with energy ∆E about E. Usually, ν(x, E′ → E) is expressed in terms of an
average ν̄ determined by

ν̄ =
1

4π

∫ ∫
4π
ν(x, E′ → E)χ(x, E′ → E)dΩdE =

∫
ν ′χ′dE. (21)

The integral ν̄ is the average number of neutrons produced by a fission at x by an incident
neutron with energy E′.

However, in general (without the assumption of isotropic emission), we will assume f is
normalized so that∫ ∫

4π
f(x,Ω′ → Ω, E′ → E)dΩ′dE′ =

∑
x

cxσx(x, E) = c(x, E). (22)

Hence, for example

c(x, E) =
σs(x, E) + ν̄σf (x, E) + . . .

σ(x, E)
, (23)

where cs = 1 for elastic scattering and cf (x, E) = ν̄c(x, E) for fission.
Finally, we arrive at the concept of a transfer probability, which describes the probability of

neutron transferring from one angle-energy packet to another after a collision. Since σ(x, E) is
the total cross section,

Total probability of neutron transfer = σ(x, E′)f(x,Ω′ → Ω, E′ → E),

from Ω′ to Ω and E′ to E (24)

where
σ(x, E′)f(x,Ω′ → Ω, E′ → E) =

∑
x

σx(x, E′)fx(x,Ω′ → Ω, E′ → E). (25)

Now we can quantify the total rate at which particles are transferred from one packet to another
after reaction x in terms of the transfer probability. At time t and position x, the reaction rate

7We typically use the Watt fission spectrum to describe χ(E).
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in neutrons per volume is given by

Total reaction rate from =v(E′)σx(x, E′)fx(x,Ω′ → Ω, E′ → E) (26)

Ω′ to Ω and E′ to E ·N(x,Ω, E, t)∆V∆Ω∆E.

In particular, by multiplying the differential cross section by the velocity of the incident neutron
vx, the units on the right hand side reactions per unit time. Therefore, the total rate at which
neutrons are transferred can be obtained by integrating expression (26) over all angles and all
energies, and summing over all reactions (indexed by x)∫ ∫

4π
v(E′)σ(x, E′)f(x,Ω′ → Ω, E′ → E)N(x,Ω, E, t)dΩdE∆V. (27)

3 Derivation

In this section, we will derive the neutron transport equation as a balance law for the neutron
population that accounts for both the gains and the losses due to the three fundamental processes
of collision, streaming, and source production described in previous sections. The treatment of
the basic derivation follows closely the presentation in [1].

Recall, the quantity N(x,Ω, E, t)∆V∆Ω∆E is the expected number of neutrons in volume
∆V centered at x, traveling within the cone of directions ∆Ω centered around direction Ω,
with energy ∆E about E at time t that is shown in Fig. 3. To derive the neutron transport
equation, we will consider the probable changes to this group or packet of neutrons over a time
interval ∆t.

First, the neutrons with energy E that are involved in a collision in ∆V will be considered
lost from the packet, and those that do not collide will continue to stream within ∆Ω about Ω.
Since the number of path lengths traveled in ∆t is v∆t and the probability per unit path length
of a collision is σ(x, E), the probability per unit path length of that the packet undergoes zero
collisions is 1− σ(x, E). Therefore, the number of neutrons remaining in the packet is

Number of neutrons = N(x,Ω, E, t)[1− σ(x, E)v∆t]∆V∆Ω∆E. (28)

remaining in packet

Since the packet is traveling in direction Ω, the remaining neutrons in the packet will arrive at
x + v∆tΩ after ∆t.

Next, the number of neutrons in the packet can also increase as a result of collisions that
cause neutrons from outside the packet to transfer into the packet. Recalling that the differential
cross section σxfx is the probability per unit length that after a reaction of type x a neutron
traveling initially in direction Ω′ with energy E′ will emerge traveling within the cone ∆Ω about
Ω and in the interval ∆E about energy E, the expected number of neutrons joining the packet
is given by ∫ ∫

4π
v′σ(x, E′)f(Ω′ → Ω, E′ → E)N(x,Ω, E, t)dΩ′dE′∆V∆Ω∆E∆t. (29)

Finally, neutrons can also be added from external sources. The source rate is denoted
q(x,Ω, E, t), and so the contribution to the packet from external sources is

Number of neutrons entering = q(x,Ω, R, t)∆V∆Ω∆E∆t. (30)

from external sources
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Therefore, tallying the number of neutrons in the packet after ∆t by adding all three terms
together (and dividing by ∆V∆Ω∆E) yields,

N(x + v∆tΩ,Ω, E, t+ ∆t) =N(x,Ω, E, t)[1− v∆tσ(x, E)]

+

∫ ∫
4π
v′σ′f ′N(x,Ω, E, t)dΩ′dE′∆t

+ q(x,Ω, R, t)∆t (31)

Next, after rearranging and dividing by ∆t we obtain

N(x + v∆tΩ,Ω, E, t+ ∆t)−N(x,Ω, E, t)

∆t
= vσN(x,Ω, E, t)

+

∫ ∫
4π
v′σ′f ′N(x,Ω, E, t)dΩ′dE′

+ q(x,Ω, R, t) (32)

In order to compute the limiting value as ∆t→ 0 on the left hand side, as an intermediate
step we need to subtract and then add N(x,Ω, E, t + ∆t) back in. The limit of the original
difference quotient in the previous equation can then be split into two terms

lim
∆t→0

N(x + v∆tΩ,Ω, E, t+ ∆t)−N(x,Ω, E, t+ ∆t)

∆t

+ lim
∆t→0

N(x,Ω, E, t+ ∆t)−N(x,Ω, E, t)

∆t
.

(33)

From which we recognize, the second term is just a partial derivative with respect to time

∂N

∂t
= lim

∆t→0

N(x,Ω, E, t+ ∆t)−N(x,Ω, E, t)

∆t
, (34)

and the second term is the directional derivative

vΩ · ∇N = lim
∆t→0

N(x + v∆tΩ,Ω, E, t+ ∆t)−N(x,Ω, E, t+ ∆t)

∆t
. (35)

This may be a good opportunity for you to dust off your favorite calculus textbook, such as [6].
Summing up, we obtain the time-dependent neutron transport equation

∂N

∂t
+ vΩ · ∇N + σvN =

∫ ∫
4π
v′σ′f ′N ′dΩ′dE′ + q(x,Ω, E, t). (36)

Recalling that ψ = vN , we can also write the neutron transport equation in the form

1

v

∂ψ

∂t
+ Ω · ∇ψ + σψ =

∫ ∫
4π
σ′f ′ψ′dΩ′dE′ + q(x,Ω, E, t). (37)

We can further expand the reaction term on the right hand side of the equation, in this case
according to contributions from scattering and fission, recall what we did in Sec. 2.2.

1

v

∂ψ

∂t
+ Ω · ∇ψ + σ(x, E)ψ =

∫ ∫
4π
σf ′ψ′dΩ′dE′ + q(x,Ω, E, t)

=

∫ ∫
4π

(σsf
′
s + νσfχ)ψ′dΩ′dE′ + q(x,Ω, E, t)

=

∫ ∫
4π
σsf

′
sψ
′dΩ′dE′ +

∫
νσfχ

∫
4π
ψ′dΩ′dE′ + q(x,Ω, E, t).

(38)
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The second term of the right hand side represents the neutrons produced from fission. It can
also be expanded further into the form∫

σfν(E′)χ(E)

∫
4π
ψ′dΩ′dE′ = χ(E)

∫
ν(E′)σf

∫
4π
ψ′dΩ′dE′ (39)

Replacing these terms in the previous equation, the transport equation can be written

1

v

∂ψ

∂t
+ Ω · ∇ψ + σ(x, E)ψ =

∫ ∫
4π
σsf

′
sψ
′dΩ′dE′ + χ(E)

∫
ν ′σ′f

∫
4π
ψ′dΩ′dE′ + q(x,Ω, E, t),

(40)

where we have finally arrived at the full expression for the time-dependent neutron transport
equation including fission and an external source.

3.1 External neutron sources

So far we have only discussed the neutron source term q as a general nebulous concept. That
is in part because the external source term is handled on a case-by-case basis. Our intensions
here is to provide you with enough information that you could make an external neutron source
term on your own.

We would like to begin our discussion with a brief dimensional analysis. We know the
neutron transport equation describes the number of neutrons in a volume at a point in time.
In essence, this means the units must be neutrons

Length3T ime
, or in SI units neutrons

cm3s
. We can check out

intuition by looking at one term in the neutron transport equation. Let’s look at the third term
from Eqn. 40:

σψ = [cm−1][neutrons cm−2s−1] = [neutrons cm−3s−1]. (41)

So that checks out. Remember these units when you are asked to make a source term for
yourself! Case and Zweifel’s[2] book titled Linear Transport Theory provides the most detailed
explanation of neutron sources describing detailed mathematical description of planar, spherical
shell and cylindrical shell source geometries. However, the mathematical explanations used
may intimidate some readers. Lamarsh and Baratta[7] provide a more understandable, yet
limited, explanation of sources in simplified geometries in Introduction to Nuclear Engineering.
Duderstadt and Hamilton’s[4] book Nuclear Reactor Analysis sits between the two previously
mentioned books in terms of mathematical rigor and number of examples.

For our discussion, we will categorize neutron sources into two types:

1. flux-driven sources (sometimes called “irradiation”) and,

2. decay reactions.

The distinction is made by how the source strength, or the number of neutrons per volume per
unit time, varies with the radiation flux. In flux-driven sources, the source strength changes
proportionally with the radiation flux. That is because these sources produce neutrons through
reactions that occur when radiation interacts with matter. Decay reaction sources do not depend
on a radiation flux. Instead, these decay reactions, or simply decays, occur when a nucleus is
left in an unstable energy state and release neutrons to relax to a more energetically stable
state. We will now provide a brief description of each type of source as well as some examples.

Flux-driven sources

Fission is perhaps the most well known of the flux-driven sources. Certain nuclei will absorb
an incoming neutron, but the energy from the extra neutron causes the nucleus to become
unstable and violently break apart into two new nuclei (daughter products) and emit two or
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more neutrons. While fission is likely the most well-known flux-driven neutron source, there are
many more. Typically, flux-driven neutron sources are written in the form A(X,Y n)B. This is
a condensed way to expresses a neutron producing nuclear reaction. The incoming particle, X,
hits the target nucleus, A, and produces a number of neutrons, where Y is an integer number,
and product nucleus B. In the case of fission, B is the product of two nuclei, since there are
two daughter products. Some common examples of neutron sources are:

1. A(α, n)B,

2. A(n, Yn)B (i.e. (n,2n), (n,3n)),

3. A(γ, n)B.

The first item in the list is called an “alpha n” reaction since an α particle (a particle made of
two neutrons and two protons) is absorbed by the target nuclei and a neutron is produced by
the reaction. The second item describes reactions where a neutron is absorbed by a nucleus and
multiple neutrons are ejected by the unstable nucleus. The final item on the list occurs when a
gamma ray with with sufficient energy is absorbed by a nucleus and a neutron is emitted. The
previous list is not exhaustive, rather it is our intension to provide a few examples and short
descriptions in order to introduce the reader to flux-driven neutron sources.

As the name suggests, flux-driven sources depend on the flux. In fact, making a flux-driven
source actually looks like a reaction rate8 where you say

q =Probability of = ψσx. (42)

Reaction x occurring

Equation 42 tells us how frequently, or how probable, the reaction x occurs. Then, a flux-driven
source can be made by substituting σx for the cross section value that produces neutrons.

Decay reaction sources

Decay reaction sources, or more simply “decay reactions/sources” or “decays”, are a type of
neutron source where a nucleus initially is in an energetically unstable state and relaxes to a
more stable state by giving off neutrons. Spontaneous fission and delayed neutron sources are
two common sources of decay reaction neutron sources. Spontaneous fission occurs naturally
in some isotopes. When certain nuclei are energetically unstable, they will fission in order to
get rid of excess energy. Spontaneous fission events create two daughter products and release
neutrons, similar to flux-driven fission.

Delayed neutrons are a special type of neutron emission that occurs in daughter products
after a fission or spontaneous fission event. Daughter products are often left in energetically
unstable configurations and need to release energy in order to relax to a more energetically
favorable state. Sometimes, neutrons are emitted as the daughter products relax. However,
since these neutrons are emitted within milliseconds after the original fission event, they are
called “delayed neutrons.”

Making a decay source term is mathematically fairly straightforward as it only depends on
the activity of the neutron producing isotope, or more specifically, the decay rate of the isotope,
α. The units of α are [decays s−1], which means we need to account for the number of neutron
per decay, Nn, and the volume of the isotope, Vi. Using this information leads to the expression

q = α ∗Nn ∗ Vi. (43)

8Reaction rates are another common quantity in nuclear engineering because they tell us how often a certain
reaction happens. The type of reaction rate is determined by the cross section used in Eqn. 42.
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As an aside, the variable Nn is simply used for notational simplicity. If you refer to it in
conversation, people probably will not know what you are referring to, instead, you should call
it “number of neutrons per decay”.

For anyone who would like to read further about making source terms, the Sources4c[14]
and MISC[11] manuals has a complete mathematical description of (α, n) reactions, sponta-
neous fission, and delayed neutron sources. This reference has probably the most complete and
understandable explanation of neutron sources.

4 Applications

Now that we have derived an equation to describe the evolution of a population of neutrons it
is time to look at an application to familiarize ourselves with the properties of this equation. In
particular, an important application in the context of nuclear reactors is neutron multiplication.
In this section, we will use the transport equation to describe the criticality of a system.

The source-free (q = 0) neutron transport equation can be written in the form

1

v

∂ψ

∂t
= −Ω · ∇ψ − σψ +

∫ ∫
4π
σ′f ′ψ′dΩ′dE′ (44)

Factoring out the v from each term, the right hand-side is a linear operation in N , hence
we write

LN = −vΩ · ∇N − vσN +

∫ ∫
4π
σf ′v′N ′dΩ′dE′. (45)

Next, we discuss how we can apply this representation of the neutron transport equation to
a few application in the context of reactors.

4.1 α-eigenvalues

If we assume that there exists solutions of the form N = exp(αt)N(x,Ω, E), then Equation
(44) becomes9

αN(x,Ω, E) = LN(x,Ω, E). (46)

As an aside, it is important to remember that the eigenvalue α is simply a mathematical
construct, even though we are able to use the value of α to determine some physical properties
of the system. In general, there exist many values of α′s satisfying Equation (46), so that we
usually write

LNj = αjNj . (47)

Equations of this form are called eigenvalue problems. For each j, Equation (47) determines an
eigenvalue αj of the linear (differential) operator L corresponding to an eigenfunction (solution)
Nj .

We can use a neat trick with eigenvalues and eigenvectors. Namely, we can expand our
solution to the original source-free equation (44) as an infinite series of the form

N =

∞∑
0

exp(αjt)Nj , (48)

9For readers already familiar with the concept of eigenvalues, in general the eigenvalues of a linear operator
may be complex. Hence, to be more thorough above, we need to replace α0 above with Re(α0), the real-part of
the principal eigenvalue. Additionally, we have not addressed a few other related questions, e.g., convergence of
the expression in (48). However, we will have to leave these important questions, which are outside the scope of
this discussion, to more advanced texts.
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using what is called the principle of superposition for linear operators. From Eqn. 48, we can
draw a few important conclusions about the long time (or asymptotic) behavior of the neutron
population in the system. Assuming that the eigenvalues are ordered so that α0 > α1 > α2 >
. . . , then as t→∞, the behavior (growth versus decay) of the population is determined by the
sign of the largest (principal) eigenvalue of the system. That is, as t→∞

N(x,Ω, E, t) ≈ Ceα0tN0(x,Ω, E), as t→∞, (49)

where the value of C is determined from the initial conditions. Hence, there are three potential
regimes we can say we are in:

1. If α0 > 0, the population is growing with time, and in the parlance of reactor theory we
say that the system is supercritical.

2. If α0 = 0, then the population is steady in time, and we say that the system is critical.

3. If α0 < 0, the population is decreasing in time, and the system is called sub-critical.

Overall, the α-eigenvalue simply tells us how the neutron population is changing in time - does
the population increase/stay the same/decrease in time?

4.2 The effective multiplication factor

The previous section taught us how to investigate the criticality of a time-dependent system.
Here we consider the scenario when, for one reason or another, we have chosen not to solve
the time-dependent problem, even through use of the α-eigenvalue. However, we still need to
assess if our system is in a subcritical, critical, or supercritical state. We then choose to drop
the time-dependent term in the neutron transport equation, Eqn. 44, which causes our balance
equation to fall out of balance (since we are no longer accounting for how the neutron population
changes in time). To re-balance the equation, we artificially rescale the fission term by 1/k,
and solve the resulting expression for the value of the k-eigenvalue. This provides a qualitative
estimate of the system’s critical state1011. Starting from the steady-state transport equation in
terms of N

1

v

∂ψ

∂t
+ Ω · ∇ψ + σ(x, E)ψ =∫ ∫

4π
σsf

′
sψ
′dΩ′dE′+χ(E)

∫
ν ′

k
σ′f

∫
4π
ψ′dΩ′dE′ + q(x,Ω, E, t), (50)

where the factor k is called an effective multiplication factor or k-effective eigenvalue. The
assumption behind including the multiplication factor k is that, any fissile material can be made
critical by adjusting the number of neutrons emitted per fission. There are three conditions that
can occur:

1. k > 1 in a supercritical system in order to reduce the number of neutrons emitted per
fission so that the solution appears to be steady.

2. 0 < k < 1 in a sub-critical system in order to increase the number of neutrons emitted
per fission to maintain a stationary population.

10We consider the k-eigenvalue to be a qualitative judgement, because the value of k only leads to high level
qualitative statements. Take two systems, the first with a k value of 0.8 and the second with a k value of 0.4.
You know that both systems are subcritical and the second system is more subcritical than the first. However,
the k-eigenvalue is insufficient to make any quantitative conclusions about the neutron population between the
two systems (i.e., the neutron population in the second system is half as much as in the first system.)

11The benefit of the k-eigenvalue problem is that it is sometimes easier to solve than the alpha-eigenvalue one,
even if most such solutions feature less physical fidelity.
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3. k = 1 is the steady-state case, or the critical system.

Again, the k eigenvalue term is a mathematical construct used to force the system into a critical
state. One way to find the value of k relies on turning Eqn. 50 into an eigenvalue problem.

To express Equation (50) in terms of a linear operator that defines the eigenvalue spectrum
for k requires a some additional work. First, we express the multiplication term using

MN = v

∫ ∫
4π
σf ′N ′dΩ′dE′, (51)

and the transport terms using
TN = vΩ · ∇N + vσN, (52)

Then we can write Equation (50) in terms of linear transformations as

TN =
1

k
MN. (53)

Rearranging, we can have
T−1MNj = kjNj . (54)

As before, there exist many values of k satisfying Equation (53), and in general these values are
called the spectrum of eigenvalues defined by the eigenvalue problem in Equation (54).

So far we have just covered a couple applications of the neutron transport equation which can
be used to determine if a system is critical or not. However, we still have not attempted to solve
the neutron transport equation. That is because solving this equation is actually impossible in
all but the most simple of systems 12. The next section will cover some approximation methods
for solving the neutron transport equation, Eqn. 40.

5 Approximations

The integral term on the right hand side of Equation (37) combining the contributions to the
neutron population through scattering and possibly fission mathematically categorizes it as a
non-local, integro-differential equation. This is in contrast to other familiar conservation laws
as local or pointwise in the form of standard partial differential equations. The difference here
is a consequence of the fact that, for example in the case of scattering, incident neutrons from
any angle Ω′ may produce a neutron traveling in any given direction Ω. Hence, as we saw in
our derivation, we must integrate over all possible incoming angles for each possible outgoing
angle. This is non-local in the sense that the outgoing angle is not assumed to be a continuous
function of the incoming angle.

All of the forthcoming approximation methods to the neutron transport equation that we
will discuss are developed to achieve essentially the same goal. Namely, to approximate the
integral terms as finite sums across discrete partitions of the integrand. In particular, this
reduces the neutron transport equation mathematically from an integro-differential equation to
a more tractable coupled system of partial differential equations. Although both simplifications
we discuss below are helpful in the analysis of the transport equation, they are also usually the
first step to building a numerical method to solve the transport equation in more specialized
applications. Although we will not discuss the topic of numerical methods for the transport
equation here the interested reader can find a comprehensive treatment of several widely-used
numerical methods in [9].

12The transport equation is integro-differential equation, easily one of the hardest types of equations in math-
ematics to solve. To complicate the matter further, the neutron transport equation depends on seven variables
(3 spatial, 2 directional, energy, and time), but at least the equation in linear! However, the transport equation
can be solved in a pure absorbing material - a material where the only possible interaction is neutron absorption.
Duderstadt and Hamilton provide an example of solving the transport equation in a pure absorber [4]. In any
other system, the only way to solve the neutron transport equation exactly is to perfectly guess the solution to
the flux. Good luck!
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Figure 6: We discretize the energy range into groups where group 1
is the highest energy and group G is the lowest energy.

5.1 The multigroup equations

Starting from the steady-state (time-independent) form of the neutron transport equation for
simplicity13, similar to Equation (40):

(Ω · ∇+ σ)ψ = q +

∫ ∞
0

∫
4π
σ′sf

′
sψ
′dΩ′dE′ + χ(E)

∫ ∞
0

ν ′σ′f

∫
4π
ψ′dΩ′dE′, (55)

the neutron energy spectrum is discretized into G subintervals called energy groups, Fig. 6.
By convention, the lowest energy group corresponds to index G and is defined by the interval
0 ≤ E < EG−1. The highest energy group then defined by E2 ≤ E < E1, where E1 is chosen
sufficiently high so that the number of neutrons with energy higher than E1 is negligible.

Next, for each group g, we introduce a new quantity called the group angular flux, defined
by

ψg(x,Ω) =

∫
g
ψdE, (56)

where the integral over each group is defined by∫
g

dE =

∫ Eg−1

Eg

dE. (57)

The energy integrals in Equation (55) can then be approximated by the contributions from each
energy group by the sum14 ∫ ∞

0
dE ≈

G∑
g=1

∫
g

dE. (58)

Next, Equation (55) integrated over an energy group Eg becomes

Ω · ∇
∫
g
ψdE +

∫
g
σψdE =

∫
g
qdE +

∫
g

G∑
g′=1

∫
g′

∫
4π
σ′sf

′
sψ
′dΩ′dE′dE

+

∫
g
χ(E)

G∑
g′=1

∫
g′
ν ′σ′f

∫
4π

dψΩ′dE′dE (59)

after applying the approximation in (58).

Energy separability

In order to obtain the mulitgroup equations, we make the assumption that within each group
Eg, the angular flux can be expressed as a product of the form

ψ(x,Ω, E) = h(E)ψg(x,Ω), Eg < E < Eg−1, (60)

13The same concepts applied here can be used to develop a time-dependent multigroup formulation of the
transport equation as well.

14This is simply the rectangle rule that you learned to approximate integrals in your calculus I class.

20



where the known function h is called the energy-dependent spectral weighting function. In most
cases the spectral weighting function h is assumed to be normalized over each group g so that∫

g
h(E)dE = 1. (61)

Substituting (60) with (61) into (59) yields

Ω · ∇
∫
g
h(E)ψgdE +

∫
g
σh(E)ψgdE = qg +

∫
g

dE
G∑

g′=1

∫
4π

dΩ′
∫
g′

dE′σ′sf
′
sh(E)ψg′

+

∫
g

dEχ(E)
G∑

g′=1

∫
g′

dE′ν ′σ′f

∫
4π

dΩ′h(E)ψg′ . (62)

The ultimate and penultimate terms on the right hand side of Equation (62) motivate the
definition of the multigroup cross section given by

σg =

∫
g
h(E)σdE. (63)

Expressing Equation (62) in terms of the multigroup cross-section, we obtain

Ω · ∇ψg + σgψg = qg +

G∑
g′=1

∫
4π

(σsfs)
′
g′ψg′dΩ′

+

∫
g
χ(E)

G∑
g′=1

(νσf )′g′

∫
4π
ψg′dΩ′dE. (64)

From which we then obtain the conventional multi-group form of the steady-state transport
equation:

(Ω · ∇+ σg)ψg =
G∑

g′=1

∫
4π

(σ′sfs)
′
g′ψ
′
g′dΩ′

+

∫
g
χ(E)

G∑
g′=1

(νσf )′g′

∫
4π
ψg′dΩ′dE + qg.

(65)

This process has removed the integral over E, but it came at a cost. We now have a set of
G coupled integro-differential equations to solve. It may not be obvious to see what we have
gained by creating the multigroup equations but hopefully it becomes more obvious once we
handle the integral over Ω in Sec. 5.4.

5.2 One-group transport equation

The multi-group equations in (65) can be thought of individually as an equation describing the
evolution of the packet of neutrons with energy Eg. The simplest case would be the reduction
to one energy group; this is usually called the one-speed transport equation. In many cases, this
assumption may over simplify systems, however, it’s important to discuss from a mathematical
point of view since solving a system of multi-group equations requires solving G coupled, one-
speed equations.

If we assume one energy group to describe the entire population, returning to the steady
state version of the neutron transport equation in (55), the cross sections and angular flux no
longer depend on energy, and we can start our derivation from the form:

(Ω · ∇+ σ)ψ(x,Ω) =

∫ ∫
4π
σ′f ′ψ′dΩ′dE′. (66)
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The right hand side can then be expanded as∫ ∫
4π
σ′f ′ψ′dΩ′dE′ =

∫ ∫
4π

∑
x

σ′xf
′
xψ
′dΩ′dE′

=
∑
x

∫ ∫
4π
σ′xf

′
xψ
′dΩ′dE′ (67)

Using the fact that the angular flux and cross sections are independent of energy E, that is,
σx(x) and ψ(x,Ω), respectively, we have

(Ω · ∇+ σ)ψ(x,Ω) =
∑
x

σ′x

∫
4π
ψ′
∫
f ′xdE′dΩ′. (68)

Since the angular distribution of neutrons emitted in any collision must also be independent of
energy

∫
f ′x(Ω′ → Ω, E′ → E)dE′ = cxf

′
x(Ω′ → Ω), we can further condense the right hand

side to ∑
x

σ′x

∫
4π
ψ′
∫
f ′xdE′dΩ′ =

∑
x

σ′x

∫
4π
ψ′cxf

′
x(Ω′ → Ω)dΩ′

=
∑
x

cxσ
′
x

∫
4π
f ′x(Ω′ → Ω)ψ′dΩ′, (69)

where cx denotes the mean number of neutrons emitted by reaction type x. For example, for
scattering and fission reactions cs = 1 and cf = ν̄ neutrons, respectively, and cσ = (σs + ν̄σf ).
We can write the previous more compactly by denoting

cσ

∫
4π
f ′(Ω′ → Ω)ψ′dΩ′ =

∑
x

cxσ
′
x

∫
4π
f ′x(Ω′ → Ω)ψ′dΩ′. (70)

Finally, we can write the one-speed transport equation in the form

(Ω · ∇+ σ)ψ(x,Ω) = cσ

∫
4π
f ′(Ω′ → Ω)ψ(x,Ω′ → Ω)dΩ′. (71)

In the next section, we will digress into geometric reductions before we approximate the
remaining integral (with respect to angle) in Equation (71) over a discrete (finite) set of angles.
In the case of the latter, the neutron transport equation will be reduced to a linear system of
PDEs, which is much more tractable relatively speaking.

5.3 Geometric Approximations

Solving the 3D form of the neutron transport equation, even the monoenergetic form in Eqn.
71, is very challenging. However, a common approach is to consider the geometry of one’s
problem and make appropriate approximations to the problem geometry in turn. These are our
geometric approximations. Namely, we will show how to make the 1D planar form of Eqn. 71.
Before applying these assumption, we will describe approaches for determining when we can
use them15.

In general, we would like to solve 1D equations if we can justify this decision. There is
no one size fits all approach for determining when a problem can be reduced from 3D to 1D,
however, we often make consolations in order to arrive at tractable equations. Some indicators
to look for when reducing the complexity of the problem are:

15Reducing the complexity of the geometry is a helpful method for solving difficult problems. When appropri-
ately applied these approximations can yield an accurate result while simultaneously reducing the time it takes
to solve a problem. However, if inappropriately applied, these methods will give drastically incorrect answers.
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Figure 7: (a) shows a slab that is taken to be much longer in the x-
and y- directions than in the z-direction. Therefore, we can reduce
the geometry of the problem and account only for the z-direction.
(b) the slab in this image has a constant varying density along the z-
direction, but constant density in the x- and y- directions. Therefore,
we can reduce the problem keeping only the z-dependence.

1. one or more dimensions of an object are much greater than the remaining dimension(s)

2. some property of an object varies much more slowly along one or more dimensions as
compared to how the same quantity varies in the remaining dimension(s)

3. the geometry of a problem is well suited for a curvilinear treatment over a Cartesian
treatment

The first item in the list refers to objects that are longer in one or two dimensions but thin in
the remaining dimension(s), shown in Fig. 7a. This slab is much long in the x- and y-directions
than in the z-direction. Hence, we can neglect the x- and y- directions and solve the problem
in 1D, along the z-direction. The second item refers to Fig. 7b, where the density of slab is
changing along the z-direction but remains constant along the x- and y-directions. Here we can
neglect the x- and y-directions again since there is little variation in the density along the x- and
y-directions as compared to the density variation along the z-direction. The final item refers to
the geometry shape of an object. If an object resembles a cylinder or sphere, it is conducive to
use cylindrical or spherical coordinates to express our equations16.

1D Planar

Now that we have determined when it is appropriate to apply a geometric approximation, we
need to reduce our equations. Reducing the problem from three spatial dimensions to one
spatial dimension eliminates two of the three spatial derivatives in Eqn. 71 and one of the two
direction derivatives. As an aside, the components of the direction vector Ω̂ are φ17 and θ
components, shown in Fig. 8. φ is the azimuthal angle and θ is the polar angle. It is common
to define the variable µ in terms of θ as

µ ≡ cos θ, (72)

where µ is defined over the range [-1, 1] and φ is defined over the range [0, 2π].
Integrating Eqn. 71 over y, z, and φ reduces the dimensionality of the problem as∫ ∞

−∞
dy

∫ ∞
−∞

dz

[
(Ω · ∇+ σ)ψ(x,Ω) = cσ

∫
4π
f ′(Ω′ → Ω)ψ(x,Ω′ → Ω)dΩ′

]
. (73)

16This should remind you of your calculus class. If you need a refresher on these coordinate systems grab your
favorite calculus text book or you can look at [6]

17It may seem confusing to have another φ show up. However, we usually consider the flux to be symmetric
about the azimuthal angle, and therefore, neglect the azimuthal angle quite frequently. We can make this
assumption because nuclear interactions tend to be invariant about the azimuthal angle.
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Figure 8: The components of Ω, where φ is the azimuthal angle and
θ is the polar angle.

Then, evaluating the integrals over dy and dz yields:

(µ
d

dx
+ σ)ψ(x, µ) =

cσ

2

∫ 1

−1
f ′(µ′ → µ)ψ(x, µ′ → µ)dµ′, (74)

where the factor 2π is a consequence of changing the bounds of integration from dΩ′ to dµ′ and
x represents our one remaining spatial variable.

Eqn. 74 is the steady-state 1D planar form of the neutron transport equation. While this
equation appears much simpler to solve, the derivative on the left-hand side and remaining
integral on the right-hand side indicate the equation is still an integro-differential equation and
further simplification is required to arrive at a tractable form. Now that we have shown how to
derive the 1D form of the neutron transport equation, it is important to identify a method for
choosing when this form can be used.

Deciding when to apply geometric reductions is a useful skill. One way to determine if a
problem can be reduced from one coordinate system to a less complex coordinate system is to
compare non-dimensionalized forms of an equation in both coordinate systems. Here we will
provide an example of this process using the diffusion equation, which will be derived in Sec.
5.5. While we have not yet introduced the diffusion equation, it acts as a simple and clear
example problem for this process. We will use the diffusion equation to see at what radius value
we can switch from using a 1D cylindrical equation to a 1D planar equation.

Non-dimensional analysis is a process where an equation is rewritten in a manner such
that there are no units in the problem (i.e., all parameters and variables in an expression
are redefined using ratios rather than dimensional quantities). Starting with the geometry-
independent diffusion equation,

−D∇d2φ

dx2
+ Σaφ = q. (75)

where the second derivative has been written using the gradient, D is the diffusion coefficient,
φ is the scalar flux, Σa is macroscopic absorption cross section, and q is the source term. The
monoenergetic, steady-state, 1D planar diffusion approximation:

−Dd2φ

dx2
+ Σaφ = q. (76)
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Dividing the equation by −D and defining L−2 ≡ Σa
D ,

d2φ

dx2
− 1

L2
φ+

q

D
= 0. (77)

Non-dimensionalizing x,

x̃ =
x

L
, (78)

where x̃ is the non-dimensionalized form of x. The first derivative becomes

dx = Ldx̃ (79)

in non-dimensional form.
The second order differential of x, dx2, becomes

dx2 = L2ddx̃2. (80)

Eqn. 76 then becomes
1

L2

d2φ

dx2
− 1

L2
φ+

q

D
= 0, (81)

or,
d2φ

dx̃2
− φ+

L2q

D
= 0. (82)

Note: L2q
D has units of Length−2Time−1, which are the same units as φ. So,

φ̃ =
φ

L2q/D
, (83)

or,

φ = φ̃
L2q

D
, (84)

where φ̃ is the non-dimensionalized form of φ. The second differential of φ becomes

d2φ =
L2q

D
d2φ̃. (85)

Using φ̃, Eqn. 82 is written as

L2q

D

d2φ̃

dx̃2
− L2q

D
φ̃+

L2q

D
= 0, (86)

or,
d2φ̃

dx̃2
− φ̃+ 1 = 0. (87)

The 1D planar diffusion approximation is now expressed in a non-dimensional form.
Expressing the gradient in Eqn. 76 in 1D cylindrical coordinates yields

1

r

d

dr

(
r

dφ

dr

)
− 1

L2
φ+

q

D
= 0, (88)

or,
d2φ

dr2
+

1

r

dφ

dr
− 1

L2
φ+

q

D
= 0. (89)

Let
r̃ =

r

L
, (90)
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Figure 9: As the factor k
r̃ decreases, the planar solutions better ap-

proximate cylindrical solutions. The location of the black vertical
line shows the point where the factor k

r̃ is 10% of its initial value at
r =10.26 cm.

and,

φ̃ =
φD

L2q
(91)

Using the non-dimensionalized variables defined in Eqns. 90 and 91, Eqn. 89 can be rewrit-
ten as

d2φ̃

dr̃2
+

1

r̃

dφ̃

dr̃
− φ̃+ 1 = 0. (92)

Then, the curvilinear form of the diffusion equation is

d2φ̃

dr̃2
+
k

r̃

dφ̃

dr̃
− φ̃+ 1 = 0, (93)

where k = 0 for planar geometries and k = 1 for cylindrical geometries. Further, plotting the
variable k

r̃ for k = 1 will show the location where accounting for cylindrical geometries becomes
negligible. Figure 9 shows the result from the previous dimensional analysis using material
properties of the fuel materials. The black vertical line in Fig. 9 shows the location where the
value of 1/r̃ (since k = 1 in cylindrical) is 1.41, or 10% of its initial value (14.11). The location
of the vertical black line shows where the cylindrical and planar models agree within 90%, and
is located at 10.26 cm. After 10.26 cm materials can be approximated using planar equations.
The value of 10% is somewhat arbitrary in this example, and you may find that you need to
increase or decrease this cutoff value depending on how accurate your results need to be for a
given application.

By no means is the previous methodology your only approach to determining the feasibility
of using a geometric approximation. Rather, it demonstrates one good trick to have when
someone asks you to defend your reasoning for reducing the geometric complexities of your
problem. From here, we will discuss how to handle the remaining integral term, the integral
over µ, in Eqn. 74.
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Figure 10: The green and blue curvy lines represent some neutron
flux angular distribution over a continuum of directions. The discrete
ordinates method instead treats the neutron flux at a set of discrete
angles given by the arrows, where the discrete flux corresponds to a
continuous flux based on the color.

5.4 Angular discretization

In the previous sections, we introduced the multi-group approximation to approximate the
energy integrals as well as how to reduce the number of spatial derivatives present in the
neutron transport equation. In this section, our goal is to approximate the remaining integral
on the right hand side by discretizing the variable specifying the direction variable into angular
packets. Our starting point will be the one-speed planar approximation in Equation (74). Recall
that the system of multi-group equations is simply a coupled version of the one-speed equation.
Hence, if we can successfully achieve our goal for the one-speed equation, –presto, we can solve
G equations by applying the same technique repeatedly.

So far we have been trying to reduce the integrals present in the neutron transport equation
into something that we can handle. For all of our hard work and assumptions, we still have
one more integral term left to handle, namely the integral over direction. We could handle
this by assuming the neutron flux is isotropically distributed, but that would be a stretch
to consider. Instead, we choose a more robust assumption, we assume that the continuous
directional dependence can be approximated using a finite sum over a discrete set of directions.
This is call the discrete ordinate (or discrete direction) approximation. We begin by taking
the steady-state, one-speed, 1D planar transport equation. In planar coordinates, the neutron
transport equation (Eqn. 74) with an external source term written in terms of the angular flux
is given by

µ
∂ψ

∂x
+ σψ =

σ(x)c(x)

2

∫ 1

−1
ψ′dµ′ + q. (94)

Discrete ordinates treats directional dependence by evaluating the integral over µ at a unique
set of directions, {µi}. Evaluating the integral in Eqn. 94 at each value of µi leads to a weighted
sum of neutron fluxes, Eqn. ∫ 1

−1
ψ′dµ′ =

M∑
i=1

wiψ(x, µi), (95)

where wi are the weights corresponding to the directions µi, then (94) becomes

µi
∂ψi
∂x

+ σψi = σ(x)
c(x)

2

M∑
i=1

wiψi + q. (96)
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for i = 1, 2, . . . ,M . This system of M equations can then be solved for the evolution of each
direction-packet corresponding to ψi(x) = ψ(x, µi). While nothing has been said about require-
ments for selecting the directions µii = 0M and weights wii = 0M , two general requirements
are

1. Since the angular flux is always positive, wi > 0.

2. The choice of directions and weights should be symmetric, µi = −µM−i+1 and wi =
wM−i+1.

The second rule requires an even choice of M . If M were taken to be odd, one value of µ
would fall on 0. This creates a problem since the direction cosine at µ = 0 is perpendicular to
the x-axis and the derivative term in Equation 96 would vanish. Another problem occurs when
finding the flux at a vacuum boundary using µ = 0. One would expect a non-zero flux leaving
the material and a zero flux entering the material from the vacuum. The discrepancy in the
flux at the material-vacuum interface leads to a discontinuity if µ is evaluated at 0.

A third property that to be considered is that is if ψ is approximated well by a low-order
polynomial, then our quadrature rule, Equation (95), should be exact. For example, using
weights and nodes defined which yield a Gaussian-Legendre quadrature rule18.

5.5 The diffusion equation

Here we develop a common approximation to the transport equation called the diffusion equa-
tion. The diffusion equation is considered a foundational equation in nuclear engineering and
it tends to be the first approximation to the transport equation that students are taught in
universities. The diffusion equation assumes the neutron flux as at most linearly anisotropic
and slowly varying in time (slowly varying in comparison to the time between neutron interac-
tions). While the diffusion equation may seem limited in complexity, this equation is actually
commonly used in reactor theory. We begin our derivation with Eqn. 96 where we take two
directions, or i = 2. Together, these two equations are called the monoenergetic S2 equations
without an external source,

µ1
∂ψ1

∂x
+ σψ1 =

c(x)σ(x)

2
(ψ1 + ψ2) (97)

−µ1
∂ψ2

∂x
+ σψ2 =

c(x)σ(x)

2
(ψ1 + ψ2). (98)

We have assumed a monoenergetic formulation of the Eqn. 96, however that is not a necessity,
and these equations could easily be extended to include a multigroup energy-dependence. Fur-
ther, µ2 has been substituted for −µ1. In fact, µ1 has to be equal in value and opposite in sign
from µ2 in order for the S2 equations to be equivalent to the diffusion approximation19. In the
S2 approximation the scalar flux, φ and the current, J , are defined as

φ ≡ 1

2
(ψ1 + ψ2) (99)

J ≡ 1

2
µ1(ψ1 − ψ2). (100)

18Gaussian-Legendre quadrature is just a fancy (and common) way of choosing the angles of your direction
vectors. You don’t have to use a Gaussian-Legendre quadrature if there is something about your problem that
would indicate choosing a different set of direction vectors. More is said about Gaussian-Legendre quadrature in
[9].

19In the case where µ1 and µ2 are equal and opposite in value, the two directions are spread evenly across the
direction space. Put another way, the two direction vectors are as far apart as possible. Doing so, evenly samples
the direction space, which is a good first guess when you have no indicators of how the flux looks.
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In general, many systems of two first-order ordinary differential equations can be written as
a single second-order differential equation. In fact, that is what we want to do here in order to
develop the diffusion approximation. First, by adding Eqns. 97 and 98 and using definitions 99
and 100 yields

µ1
∂ψ1

∂x
− µ1

∂ψ2

∂x
+ σ(ψ1 + ψ2) = c(x)σ(ψ1 + ψ2), (101)

or,

µ1

(
∂(ψ1 − ψ2)

∂x

)
+ σ(ψ1 + ψ2)− c(x)σ(ψ1 + ψ2), (102)

such that,

2
∂J

∂x
+ 2σφ− 2c(x)σφ = 0 (103)

or,
∂J

∂x
+ (σ − c(x)σ)φ = 0, (104)

and defining σ − c(x)σ = σa yields,
∂J

∂x
+ σaφ = 0. (105)

By subtracting Eqns. 97 and 98 and using definitions 99 and 100,

µ1
∂ψ1

∂x
+ µ1

∂ψ2

∂x
+ σ(ψ1 − ψ2) = 0, (106)

such that,

µ1
∂

∂x
(ψ1 + ψ2) + σ(ψ1 − ψ2) = 0, (107)

multiplying by µ1,

µ1σ(ψ1 − ψ2) = −µ2
1

∂φ

∂x
, (108)

which simplifies to,

Jσ = −µ2
1

∂φ

∂x
. (109)

Eqn. 109 is equivalent to Fick’s Law20 when µ1 = 1√
3
, which is true when using Gaussian-

Legendre quadrature. Upon substituting Eqn. 109 into Eqn. 105 results in the diffusion
equation,

∂

∂x

(
−µ2

1

σ

∂φ

∂x

)
+ σaφ = 0. (110)

Commonly, we set D, or the diffusion coefficient, equal to −µ2
1/σ such that Eqn. 110 can be

rewritten as

−D ∂

∂x

(
∂φ

∂x

)
+ σaφ = 0. (111)

As a reference, if we are to extend Eqn. 111 into three dimensions, we need to invoke the use of
the Laplacian operator. Doing so lets us arrive at the more general 3D diffusion approximation,

−D
(
∇2φ

)
+ σaφ = 0. (112)

This form of the diffusion equation is helpful when a problem requires the use of a curved
geometry since the Laplacian operator can be expressed in Cartesian, cylindrical, or spherical
forms. In the previous derivation, four assumptions are made which must be adhered to in
order for the S2 equations and diffusion approximation to be equivalent:

20Fick’s Law commonly shows up when solving any type of diffusion equation. In fact, the neutron diffusion
equation gains its name from treating the neutrons like a specimen diffusion through a medium just like in heat
transfer, chemistry, and other areas of science and engineering.
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1. µ1 and µ2 must be chosen symmetrically, i.e. have the same value but opposite signs;

2. µ1 = −µ2 = 1√
3

if the S2 equations are to have the traditional definition for the diffusion

coefficient;

3. σ 6= 0, i.e. this derivation will not hold in void;

4. The material must be homogenous.

The first three assumptions must be satisfied in order for these equations to be equivalent,
however, the fourth condition can be relaxed by treating both the diffusion coefficient and the
cross sections as functions of position during their respective derivations.

The diffusion equation is known to suffer inaccuracies when

1. The neutron flux is not isotropic which violates assumption 1 in the previous list,

2. When the material is highly absorbing which violates assumption 2 in the previous list

3. Near material boundaries which violates assumption 4 in the previous list.

While these criteria may seem constrictive, the diffusion equation is often used to approximate
the neutron flux even when one, or all three, of these assumptions are broken!

Further reading

Lamarsh and Baratta [7] is considered a great resource for matters which use the diffusion
equation. In this authors’ opinion, Lewis [8] provides the most basic description of some of the
concepts we have described in this section. For multigroup and discrete ordinates discussion,
the author believes that Duderstadt and Hamilton [4] and Bell and Glasstone [1] have the
best descriptions of the multigroup discrete ordinates approximations, the techniques used for
angular and energy discretization.

6 Example problems

In this section, we will show two example problems to help the reader practice the theories we
have introduced.

1D polar diffusion problem

The first example uses the diffusion equation in a cylindrical neutron source material (i.e.; non-
zero fission cross section) surrounded by a vacuum, Fig. 11. We will also assume there is some
initial source, q, of neutrons in the material. We will tackle this problem in 1D. The 1D radial21

form of Eqn. 112 arrives from using the 1D radial definition of the Laplacian operator as

−D
r

∂

∂r

(
r
∂φ

∂r

)
+ σaφ = ν̄σfφ+ q, (113)

where ν̄ is the average number of neutrons emitted per fission, σf is the fission cross section,
σa is the absorption cross section, and q is our neutron source term. Here, we need to use the
polar form of the diffusion equation given the curvilinear geometry of the problem.

21You may be wondering what a 1D radial system would like. Think about an infinitely long cylinder. You
would expect to see some variation in the neutron flux as you moved from the center of the cylinder radially
outward to the edge. Alternatively, there would be little change in the neutron flux if you moved up and down
the length of the cylinder. This is what is meant by 1D radial. In reality, a 1D radial system would look like a
thin but long cylinder, something like a fuel rod used in a nuclear reactor. As long as you stay away from the
edges of the rod, the neutron flux only has small variations as a function of length.
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Figure 11: This example looks at a multiplying material which con-
tains a neutron source in radial geometry. We want to find the
neutron flux as a function of radius in the material.

If we divide Eqn. 113 by −D and combine like terms,

1

r

∂

∂r

(
r
∂φ

∂r

)
− φ

(
σa − ν̄σf

D

)
+
q

D
= 0. (114)

To solve equation 114, we define the variable B as:

B2 ≡
σa − ν̄σf

D
. (115)

The term B is called the material buckling22 term since it depends on material properties only.
Various authors write about the material buckling for the interested reader [4, 7, 8]. We know
the general solution to a problem of the form in Eqn. 114 with the definition of the material
buckling provided in Eqn. 115 to be [6]

φ = AI0(Br) + CK0(Br) with A and C = constants, (116)

where I0 and K0 are modified Bessel functions23 of the first and second kind respectively.
To solve for the constants, A and C, we set the boundary conditions from the definition of our
problem to be:

1. Flux at r = 0 is finite, φ(r = 0) <∞,

2. Flux is zero at an extrapolated radius, φ(r = R̃) = 0, since the system is in a vacuum.

Here we have chosen the flux to go to 0 at the extrapolated radius. The extrapolated radius is
a mathematical construct that “adjusts” the value of the neutron flux near the boundary of a
material. If you recall, the diffusion equation fails near material boundaries. The extrapolated
radius adjusts the flux at the boundary to account for deficiencies in using the diffusion equation.
Lamarsh and Baratta provide an excellent description of the extrapolated boundary condition
[7]. It will suffice us for now to say that the extrapolated radius is defined as

R̃ = R+ 2.13D. (117)

Applying the first boundary condition sets C = 0, since K0 goes to infinity as r goes to zero.
The second constant, A, is found by solving the homogenous and inhomogeneous equations for

22Way back when someone thought this term resembled a beam buckling equation encountered in structural
mechanics, hence the name “buckling”... or so the rumor goes.

23Bessel functions are an example of a special function. These functions are a solution to Bessel’s differential
equations. They are related to cylindrical and spherical harmonics. If you are interested in Bessel functions or,
more generally, special functions, talk with Scott Ramsey. He really likes this kind of stuff.
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Figure 12: The neutron flux through our material as a function of
radius.

φ while invoking the second boundary condition. The final solution for the flux is

φ =
q

DB2

(
1− I0(Br)

I0(BR̃)

)
(118)

which is plotted in Fig. 12. We can see here that the neutron flux is peaked at the center of
the cylinder. This makes sense since at the center of the cylinder, the neutrons have to travel
the furthest before they can leave the cylinder, so we would expect the neutron flux (or neutron
population) to be highest at this location. The neutron population decreases as we move away
from the center; this is pretty normal behavior in a homogenous material as neutrons will be able
to escape the cylinder through scattering interactions (we also call this process leakage), which
is a common behavior in diffusion processes. Another interesting feature is that the shape of
the curve is controlled by the parameter B, the material buckling. This means the shape of the
neutron population through the material is dependent on the material itself. These may seem
like trivial or intuitive conclusions, but it is always a good practice to make sure your results fit
with your intuition, as this provides a quick test to see if you hay have messed something up.

E1S2 problem

Our next problem is going to use the monoenergetic discrete ordinates equations with two
directions (Eqn. 96 with i = 2). These equations are sometimes referred to as the Sn equations,
or in this case the S2 equations as we are using two directions. We will calculate the neutron
flux in a slab of highly scattering material which has the properties shown in Fig. 13. Using
Eqn. 96 with i = 2 leads to the set of equations:

µ1
dψ1

dx
+ σψ1 =

σs
2

(ω1ψ1 + ω2ψ2) ; (119)

µ2
dψ2

dx
+ σφ2 =

σs
2

(ω1ψ1 + ω2ψ2) ; (120)

In the previous equations, ω is a weighting function and the subscript notation denotes the
direction of the variable. Here we have also decided to use the notation σs = cσ to describe
the scattering cross section (this is just another notation that you will see in some nuclear
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Figure 13: Here we are looking as a slab of material with a neutron
flux impinging on the left surface and no external neutron flux hitting
the right surface, often called a non re-enterant boundary condition.
We use a Gaussina-Legendre quadrature definition of our weighting
values and direction vectors.

engineering textbooks). We re-write Eqns. 119 and 120 as the matrix equation:

−
[
µ1 0
0 µ2

]
d

dx

[
ψ1

ψ2

]
+

(
σs
2

[
w1 w2

w1 w2

]
−
[
σ 0
0 σ

])[
ψ1

ψ2

]
=

[
0
0

]
(121)

For those not used to solving coupled systems of differential equations, it may seem weird to
make a matrix problem with Eqns. 121. However, forming matrix problems are a good way
to solve coupled systems of equations[16]. A good approach is to set up an eigenvalue problem
with Eqn. 121. We can then solve this eigenvalue problem in the same manner that you learned
in linear algebra[12]. This is the approach that we are about to take to solve for φ1 and φ2.
The eigenvalue problem then becomes

d

dx

[
ψ1

ψ2

]
=

[
µ1 0
0 µ2

]−1(
σs
2

[
w1 w2

w1 w2

]
−
[
σ 0
0 σ

])[
ψ1

ψ2

]
. (122)

We will need to find the eigenvalues and eigenvectors pertaining to Eqn. 122 in order to
construct the general form of the solution. Inserting numbers sometimes helps computational
solvers, like Mathematica, determine the solution to coupled systems of differential equations
more quickly. To speed up the solution process, we insert values for the parameters which leads
to

d

dx

[
ψ1

ψ2

]
=

[
0.58 0

0 −0.58

]−1(
1

2

[
0.28 0.28
0.28 0.28

]
−
[
0.30 0

0 0.30

])[
ψ1

ψ2

]
(123)

or,

d

dx

[
ψ1

ψ2

]
=

[
−0.28 0.24
−0.24 0.28

] [
ψ1

ψ2

]
. (124)

The eigenvalues, λ, of the matrix in Eqn. 124 are

λ = −0.13, 0.13. (125)

The eigenvectors, η, are

η =

[
1.70

1

]
,

[
0.59

1

]
. (126)
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After finding the eigenvalues and eigenvectors, we can write the general form of the solution
for ψ1 and ψ2 using exponentials since exponential functions satisfy the solution of first-order
differential equations[16]. Therefore, we guess the solutions to be of the form

ψ1 = C1e
λ1xη11 + C2e

λ2xη21, (127)

ψ2 = C1e
λ1xη12 + C2e

λ2xη22, (128)

where C1 and C2 are constants, λ1 and λ2 are the first and second eigenvalues respectively. η11

is the first element of the first eigenvector, η12 is the second element of the first eigenvector,
η21 is the first element of the second eigenvector, and η22 is the second element of the second
eigenvector. Solving for C1 and C2 requires the use of the following boundary conditions from
the problem description:

ψ1(x = 0) = 275, (129)

ψ2(x = 10) = 0, (130)

where the slab thickness is 10 cm. Using Eqn. 129 on Eqn. 127 and Eqn. 129 on Eqn. 128
yield

C1 = 166.09, (131)

C2 = −11.38. (132)

We can now create an expression for the total flux (Eqn. 133) using the complete directional
fluxes, ψ1 and ψ2 as

φ = w1ψ1 + w2ψ2 (133)

φ = 447.80e−0.13x − 18.10e0.13x (134)

Figure 14 shows the results of Eqn. 133. The partial flux values (ψ1 and ψ2) are also shown
to demonstrate some findings. In this problem, we assumed there was a source of neutrons
(ψ1(x = 0) = 275 neutrons cm−3 s−1) impinging on the leftmost face of the material at
x = 0 cm. We can see that ψ1 is in fact equal to our source strength at x = 0 cm before
slowly decreasing as a function of thickness. Here ψ1 represents the population of right traveling
neutrons, and ψ1 decreases as neutrons are absorbed or are scattered and start traveling leftward.
Similarly, ψ2 is 0 at x = 10 cm, which corresponds to our second boundary condition, but is non-
zero for other thickness values. Even though we chose to start no neutron moving leftward at
x = 10 cm, we still see a neutron population with a left-facing direction. The entire left-moving
neutron population is generated by the scattered right-moving neutrons that were started at
x = 0 cm. We think that’s a pretty neat conclusion, but we’re nerds.

Lewis [8], Lamarsh and Baratta [7], and Duderstadt and Hamilton [4] all provide many more
examples for the interested reader. These examples are all fairly simple, limited to using the
diffusion equation in planar geometry, however, they provide a complimentary set of example
problems to those presented here.

7 Conclusion

Our intention with this document is to provide you with an introduction into the world of
neutron transport. However, there is plenty that we were not able to cover in here, namely,
numerical and computational methods. Numerical methods are ways in which we try to approx-
imate the equations we have discussed in order to feed them into a computer. Many times this
involves discretizing the equations in a manner that creates many coupled analytic equations
(since computers are really good at doing algebra). The discrete ordinates and multi-group
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Figure 14: Flux through material region determined by solving the
E1 S2 equations. The figure also shows that partial fluxes as ψ1 and
ψ2.

methods are examples of some numerical techniques, both of which serve as areas for much
deeper discussion potential. Lewis and Miller provide an excellent description of numerical
methods for those interested [9].

Computational methods were also not discussed in herein. These methods rely on com-
plex codes to simulate reality. Probably the best known code used in nuclear engineering is
the Monte Carlo N-Particle (MCNP) radiation transport code. Computational tools rely on
different methods, such as Monte Carlo methods for MCNP, to predict how radiation is trans-
ported through a system. There are a plethora of different computational tools which simulate
reality using various methods, but Monte Carlo methods are used quite commonly for radia-
tion transport, and the MCNP5: Theory Manual provides a well written description of such
methods[13].

Finally, we tended to gloss over some topic in curvilinear geometry. Occasionally, these
forms of the neutron transport or diffusion equation come in handy, but our intension was to
build a framework for each reader’s personal growth. For anyone who is more interested in the
topic, we have provided a list of references in the following section.

We hope that the topics covered herein will give you a basis upon which to build your
understanding and successfully conduct your day-to-day activities. We hope you found this an
enjoyable read and learned something along the way!

8 Review of some helpful resources

Below is a list of helpful resources. We have split of the list into and introductory, intermediate
and advanced sections to help the reader find the right book.

8.1 Introductory

Lewis [8] writes a straightforward text that the authors believe is well-suited for the introductory
reader. Lewis presents many topics useful in nuclear engineering, such as radiation interactions,
cross sections, diffusion, lethargy, and others. This is a good starting place for someone with
little to no background in nuclear concepts.

The MISC [11] and Sources4C [14] manuals are also well-suited for an introductory reader.
However, these manuals focus on the theory behind radioactive decay and some radiation inter-
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actions concepts. A curious reader looking to learn more about radiation source construction
would enjoy reading through the theory sections of these documents.

8.2 Intermediate

Lamarsh and Baratta [7] is a commonly used graduate level text in nuclear engineering programs.
The authors provide a great description of the diffusion equation, but a reader looking to learn
more about the full transport equation may find the authors’ description lacking. The authors
also begin their discussion at an introductory level and progress their topics to complex ideas.
Overall, Lamarsh and Baratta is a wonderful textbook for a reader interested in applying the
diffusion equation.

Duderstadt and Hamilton [4] is another text often used in nuclear engineering graduate
programs. Duderstadt and Hamilton is of similar rigor to Lamarsh and Baratta, however it
provides more discussion on the neutron transport equation, multigroup equations, and discrete
ordinates equations. This text is well-suited for anyone wishing to further understand these
approximation of the full transport equation.

Lewis and Miller [9] provide a detailed description of various numerical methods used in
neutron transport. This text is perhaps the best resource to learn more about the multigroup
or discrete ordinates formulations of the neutron transport equation. This text goes further to
describe many methods for handling the full neutron transport equation and approximating its
solution with computational methods. While the topics covered in this text are fairly advanced
and complex, Lewis and Miller present the material in a manageable manner.

Bell and Glasstone [1] is, in this author’s opinion, the most complex of the intermediate
level texts in this list and the best resource for discussion pertaining to the neutron transport
equation. Bell and Glasstone focus on the neutron transport equation with very little discussion
of the diffusion equation in this text. The material is complex, however the descriptions provided
are thorough and tractable - if only after reading a section two or three times. Overall, this
text has become this author’s go to for any topics pertaining to neutron transport.

8.3 Advanced

Mingle [10] and Wing [15] both describe a process for handling transport called invariant imbed-
ding. This process envisions neutron transport in a manner slightly different than the standard.
These texts are well written, but it may take a couple read throughs to fully understand the
concepts. Overall, the mathematics behind the process are quite tractable, but the concepts of
the book make it an advanced text.

Case and Zweifel [2] is another great text focused on the neutron transport equation and
has plenty of in-depth and challenging discussion for the advanced reader. To get through this
text, you may find that you need access to someone with at least a minor in mathematics.

Ganapol [5] provides a large bank of example problems of varying difficulty. This document
begins by introducing many equivalent forms of the neutron transport equation and provides
derivations for the provided forms. Further, this text provides solved example problems that
range from the most basic setup to very complex. Overall, this text provides a wealth of
information, but could be challenging to understand for someone new to the concepts. The
rigor required to follow some of the mathematics, especially in the more complex example
problems, make this an advanced text.
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